11,031 research outputs found

    Quantum authentication of classical messages

    Full text link
    Although key distribution is arguably the most studied context on which to apply quantum cryptographic techniques, message authentication, i.e., certifying the identity of the message originator and the integrity of the message sent, can also benefit from the use of quantum resources. Classically, message authentication can be performed by techniques based on hash functions. However, the security of the resulting protocols depends on the selection of appropriate hash functions, and on the use of long authentication keys. In this paper we propose a quantum authentication procedure that, making use of just one qubit as the authentication key, allows the authentication of binary classical messages in a secure manner.Comment: LaTeX, 6 page

    Anomalous exchange interaction between intrinsic spins in conducting graphene systems

    Get PDF
    We address the nature and possible observable consequences of singular one-electron states that appear when strong defects are introduced in the metallic family of graphene, namely, metallic carbon nanotubes and nanotori. In its simplest form, after creating two defects on the same sublattice, a state may emerge at the Fermi energy presenting very unusual properties: It is unique, normalizable, and features a wave function equally distributed around both defects. As a result, the exchange coupling between the magnetic moments generated by the two defects is anomalous. The intrinsic spins couple ferromagnetically, as expected, but do not present an antiferromagnetic excited state at any distance. We propose the use of metallic carbon nanotubes as a novel electronic device based on this anomalous coupling between spins which can be useful for the robust transmission of magnetic information at large distances.Comment: 5 pages 5 fugure

    Qubit authentication

    Get PDF
    Secure communication requires message authentication. In this paper we address the problem of how to authenticate quantum information sent through a quantum channel between two communicating parties with the minimum amount of resources. Specifically, our objective is to determine whether one elementary quantum message (a qubit) can be authenticated with a key of minimum length. We show that, unlike the case of classical-message quantum authentication, this is not possible.Comment: LaTeX, 8 page

    Quantum Chaos, Delocalization, and Entanglement in Disordered Heisenberg Models

    Get PDF
    We investigate disordered one- and two-dimensional Heisenberg spin lattices across a transition from integrability to quantum chaos from both a statistical many-body and a quantum-information perspective. Special emphasis is devoted to quantitatively exploring the interplay between eigenvector statistics, delocalization, and entanglement in the presence of nontrivial symmetries. The implications of basis dependence of state delocalization indicators (such as the number of principal components) is addressed, and a measure of {\em relative delocalization} is proposed in order to robustly characterize the onset of chaos in the presence of disorder. Both standard multipartite and {\em generalized entanglement} are investigated in a wide parameter regime by using a family of spin- and fermion- purity measures, their dependence on delocalization and on energy spectrum statistics being examined. A distinctive {\em correlation between entanglement, delocalization, and integrability} is uncovered, which may be generic to systems described by the two-body random ensemble and may point to a new diagnostic tool for quantum chaos. Analytical estimates for typical entanglement of random pure states restricted to a proper subspace of the full Hilbert space are also established and compared with random matrix theory predictions.Comment: 17 pages, 10 figures, revised versio

    Spectra and Diagnostics for the Direct Detection of Wide-Separation Extrasolar Giant Planets

    Full text link
    We calculate as a function of orbital distance, mass, and age the theoretical spectra and orbit-averaged planet/star flux ratios for representative wide-separation extrasolar giant planets (EGPs) in the optical, near-infrared, and mid-infrared. Stellar irradiation of the planet's atmosphere and the effects of water and ammonia clouds are incorporated and handled in a consistent fashion. We include predictions for 12 specific known EGPs. In the process, we derive physical diagnostics that can inform the direct EGP detection and remote sensing programs now being planned or proposed. Furthermore, we calculate the effects of irradiation on the spectra of a representative companion brown dwarf as a function of orbital distance.Comment: submitted to the Astrophysical Journal, 19 pages, 11 color figure

    Influence of lanthanum doping on the structure and transport properties of CeO2

    Get PDF
    LaxCe1-xO2-x/2 materials are oxide and/or proton conductors depending on the La-content and they are of interest for numerous electrochemical applications at high temperatures, including membranes for hydrogen separation and fuel cell electrolytes. Samples with low La-content exhibit (x0.4) crystallize with cubic fluorite type structure; while for x>0.4 the structure is still unclear. The crystal structure of these materials is still unknown, some authors reported that the materials exhibit fluorite type structure in the whole compositional range. However, another authors reported a pyrochlore type structure for x0.5. The stabilization of the fluorite or pyrochlore type structure depends mainly on the oxygen sublattice and the vacancy ordering1. In this contribution, LaxCe1-xO2-δ (0<x0.7) materials are prepared by the freeze-drying precursor method and the sintering conditions have been optimized to obtain dense ceramic samples. A complete structural characterization has been carried out by X-ray powder diffraction and scanning electron microscopy. The average structure determined by conventional XRD indicates that the materials are single fluorite compounds for x0.6. However, the local structure determined by combined electron diffraction and HRTEM is more complex. The SAED patterns reveal diffuse scatterings for x0.5 that have been associated with O-vacancy ordering, leading to a superstructure relative to a single fluorite . This finding is further confirmed by the HRTEM images in the same zone axis. Thermogravimetric and Raman analysis confirmed an increase of oxygen vacancy concentration with La-doping. The overall conductivity was determined by complex impedance spectroscopy in different atmospheres. The samples with high La-content exhibit an important proton contribution at low temperature. In addition, all samples are mixed ion-electronic conductors in hydrogen containing atmosphereUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Use of LC-MS analysis to elucidate by-products of niacinamide transformation following in vitro skin permeation studies

    Get PDF
    Pyridine-3-carboxamide, also known as niacinamide (NIA), is used in many pharmaceutical and personal care formulations for the improvement of skin barrier function, management of acne and amelioration of the symptoms of atopic dermatitis [1-3]. The widespread use of NIA (Table I) in skin care highlights the importance of understanding the percutaneous penetration and skin distribution of this molecule [4]. Previously, we have conducted several studies that have evaluated a wide variety of NIA formulations [4, 5]

    Mandate-driven networking eco-system : a paradigm shift in end-to-end communications

    Get PDF
    The wireless industry is driven by key stakeholders that follow a holistic approach of "one-system-fits-all" that leads to moving network functionality of meeting stringent End-to-End (E2E) communication requirements towards the core and cloud infrastructures. This trend is limiting smaller and new players for bringing in new and novel solutions. For meeting these E2E requirements, tenants and end-users need to be active players for bringing their needs and innovations. Driving E2E communication not only in terms of quality of service (QoS) but also overall carbon footprint and spectrum efficiency from one specific community may lead to undesirable simplifications and a higher level of abstraction of other network segments may lead to sub-optimal operations. Based on this, the paper presents a paradigm shift that will enlarge the role of wireless innovation at academia, Small and Medium-sized Enterprises (SME)'s, industries and start-ups while taking into account decentralized mandate-driven intelligence in E2E communications
    • …
    corecore